A Proximal Alternating Direction Method for Semi-Definite Rank Minimization

نویسندگان

  • Ganzhao Yuan
  • Bernard Ghanem
چکیده

Semi-definite rank minimization problems model a wide range of applications in both signal processing and machine learning fields. This class of problem is NP-hard in general. In this paper, we propose a proximal Alternating Direction Method (ADM) for the well-known semi-definite rank regularized minimization problem. Specifically, we first reformulate this NP-hard problem as an equivalent biconvex MPEC (Mathematical Program with Equilibrium Constraints), and then solve it using proximal ADM, which involves solving a sequence of structured convex semi-definite subproblems to find a desirable solution to the original rank regularized optimization problem. Moreover, based on the KurdykaŁojasiewicz inequality, we prove that the proposed method always converges to a KKT stationary point under mild conditions. We apply the proposed method to the widely studied and popular sensor network localization problem. Our extensive experiments demonstrate that the proposed algorithm outperforms state-of-the-art low-rank semi-definite minimization algorithms in terms of solution quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

Hankel Matrix Rank Minimization with Applications to System Identification and Realization

We introduce a flexible optimization framework for nuclear norm minimization of matrices with linear structure, including Hankel, Toeplitz and moment structures, and catalog applications from diverse fields under this framework. We discuss various first-order methods for solving the resulting optimization problem, including alternating direction methods of multipliers, proximal point algorithms...

متن کامل

Improving an ADMM-like Splitting Method via Positive-Indefinite Proximal Regularization for Three-Block Separable Convex Minimization

Abstract. The augmented Lagrangian method (ALM) is fundamental for solving convex minimization models with linear constraints. When the objective function is separable such that it can be represented as the sum of more than one function without coupled variables, various splitting versions of the ALM have been well studied in the literature such as the alternating direction method of multiplier...

متن کامل

A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block

In this paper, we present a semi-proximal alternating direction method of multipliers (ADMM) for solving 3-block separable convex minimization problems with the second block in the objective being a strongly convex function and one coupled linear equation constraint. By choosing the semi-proximal terms properly, we establish the global convergence of the proposed semi-proximal ADMM for the step...

متن کامل

Inexact alternating direction method based on Newton descent algorithm with application to Poisson image deblurring

The recovery of images from the observations that are degraded by a linear operator and further corrupted by Poisson noise is an important task in modern imaging applications such as astronomical and biomedical ones. Gradient-based regularizers involve the popular total variation semi-norm have become standard techniques for Poisson image restoration due to its edgepreserving ability. Various e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016